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1. F'hys. A. Math. Gen. 26 (1993) L1251-L12.53. Printed in the UK 

LETTER TO THE EDITOR 

The n-dimensional S-Poincark algebra and group 

Pawet MAlanka 
Oepartment of FunctionaJ Analysis. Institute of Mathematics. University o f U d t ,  
ul. St Banacha 22,9&238 U t ,  Poland 

Received 19 October 1992 

Abstract. The ndimensional u - P o i n d  a @ e h  and its globd counterpm are described. 

Recently an interesting deformation of Poincd algeb-the so-called K-Poincart algebra- 
has been constructed [ I ]  (see also [2]) .  The global counterpart of the K-Poincar.6 algebra 
was constructed by zakrzewski [31. In the present letter we generalize this discussion to the 
n-dimensional case. The straightforward generalization of the four-dimensional case gives 
us the following K-Poincd algebra in n dimensions (with M i j  being rotations while Mi0 
are boosts, i ,  j ,= 1,2,. , . , n - 1): 

[Mij, Mki] = i(8ikMjl +8jiMik -6ilMjk -8jkMil) [Mi , ,  4 1  i(6;kf, -6 jkP i )  

LP,. P"1 = 0 
where p, v =0,1, .. . , n  - 1. 

The comultiplication is defined as follows: 

while the antipode is given by 
i (n  - 1) 

S(P,) = -P, S ( M i j )  = -Mij  S (Mi0)  = -Mi0 + 7 P i .  
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The classical n-dimensional Poincark group consists of matrices of the form 

where A = (At)  belongs to the Lorentz group and U = (U”) E R” (p, v = 0,1,. . . , n - I). 
In order to quantize this group we first define, using co-product (2). the co-commutator 

(5) 
1 

8 = ( A h - u o A )  mod-. 
K 

Here U is the flip operator U : a @ b -+ b @ a. 
We have 

Again, as in four dimensions 131, 8 is a co-boundary 

which is invariant: therefore r is a classical r-matrix. It is easy to check that in only three 
dimensions we can improve the r-matrix (by adding the symmetric term) in such a way that 
the new r-matrix is the solution to the classical Yang-Baxter equation: it reads 
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In order to obtain the corresponding quantum group we consider the universal *-algebra 
with unity generated by self-adjoint elements A t ,  u p  (p,  U = 0, 1, . . . . n - I), subject to 
the following relations: 

[ A t ,  A;] = 0 1 I 
[ v , u ] - - u k  k 0 -  [A;, UOI = ;(A;A; - 6%,o) 

[A:, U’] = -(A:A; - A;) 

K 

(11) 
, i  i 

[A;, U 1 = -(am, -&,,,A: + A ~ A ; )  
K K 

I I 

K 
[A”, U’] = ;(A;A> - AL) [AT, U‘] = -(AfA; - A:&,,,) 

which are obtained from (IO) by making a replacement [ , ] -+ I/i[ , 1. This set of 
relations is consistent: there is no ordering ambiguity, when ‘quantizing’ the right-hand 
side of (10) because of commutativity in the first relation of (1 1). Moreover, since the 
standard comultiplication is compatible with Poisson brackets (IO), it is also compatible 
with relations ( I  1). We conclude that the above relations together with the standard co- 
multiplication define a Hopf *-algebra. 

I am grateful to Professor P Kosidski for discussions. This work was supported by KBN 
grant202189101. 
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