The n-dimensional kappa -Poincare algebra and group

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1993 J. Phys. A: Math. Gen. 26 L1251
(http://iopscience.iop.org/0305-4470/26/24/001)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.68
The article was downloaded on 01/06/2010 at 20:32

Please note that terms and conditions apply.

LETTER TO THE EDITOR

The \boldsymbol{n}-dimensional κ-Poincaré algebra and group

Paweł MaSlanka
Department of Functional Analysis, Institute of Mathematics, University of Łodz, ul. St Banacha 22, 90-238 Łodz, Poland

Received 19 October 1992

Abstract. The n-dimensional κ-Poincare algebra and its global counterpart are described.

Recently an interesting deformation of Poincare algebra-the so-called κ-Poincaré algebrahas been constructed [1] (see also [2]). The global counterpart of the κ-Poincaré algebra was constructed by Zakrzewski [3]. In the present letter we generalize this discussion to the n-dimensional case. The straightforward generalization of the four-dimensional case gives us the following κ-Poincare algebra in n dimensions (with $M_{i j}$ being rotations while $M_{i 0}$ are boosts, $i, j=1,2, \ldots, n-1$):
$\left[M_{i j}, M_{k l}\right]=\mathrm{i}\left(\delta_{i k} M_{j l}+\delta_{j l} M_{i k}-\delta_{i l} M_{j k}-\delta_{j k} M_{i l}\right) \quad\left[M_{i j}, P_{k}\right]=\mathrm{i}\left(\delta_{i k} P_{j}-\delta_{j k} P_{i}\right)$
$\left[M_{i j}, P_{0}\right]=0 \quad\left[M_{i 0}, P_{k}\right]=\mathrm{i} \kappa \delta_{i k} \sin h\left(\frac{P_{0}}{\kappa}\right) \quad\left[M_{i 0}, P_{0}\right]=\mathrm{i} P_{i}$
$\left[M_{i j}, M_{k 0}\right]=\mathrm{i}\left(\delta_{i k} M_{j 0}-\delta_{j k} M_{i 0}\right)$
$\left[M_{i 0}, M_{j 0}\right]=-\mathrm{i}\left[M_{i j} \cos h\left(\frac{P_{0}}{\kappa}\right)-\frac{1}{4 \kappa^{2}}\left(M_{i j} \boldsymbol{P}^{2}+\sum_{k=1}^{n-1} P_{i} M_{j k} P_{k}-\sum_{k=1}^{n-1} P_{j} M_{i k} P_{k}\right)\right]$
$\left[P_{\mu}, P_{\nu}\right]=0$
where $\mu, v=0,1, \ldots, n-1$.
The comultiplication is defined as follows:

$$
\begin{align*}
& \Delta P_{0}=P_{0} \otimes I+I \otimes P_{0} \quad \Delta P_{i}=P_{i} \otimes \exp \left(\frac{P_{0}}{2 \kappa}\right)+\exp \left(-\frac{P_{0}}{2 \kappa}\right) \otimes P_{i} \\
& \Delta M_{1 j}=M_{i j} \otimes I+I \otimes M_{i j} \\
& \Delta M_{i 0}=M_{i 0} \otimes \exp \left(\frac{P_{0}}{2 \kappa}\right)+\exp \left(-\frac{P_{0}}{2 \kappa}\right) \otimes M_{i 0}+\frac{1}{2 \kappa} \sum_{j=1}^{n-1} P_{j} \otimes M_{i j} \exp \left(\frac{P_{0}}{2 \kappa}\right) \tag{2}\\
& \quad-\frac{1}{2 \kappa} \sum_{j=1}^{n-1} \exp \left(-\frac{P_{0}}{2 \kappa}\right) M_{i j} \otimes P_{j}
\end{align*}
$$

while the antipode is given by

$$
\begin{equation*}
S\left(P_{\mu}\right)=-P_{\mu} \quad S\left(M_{i j}\right)=-M_{i j} \quad S\left(M_{i 0}\right)=-M_{i 0}+\frac{i(n-1)}{2 \kappa} P_{i} \tag{3}
\end{equation*}
$$

The classical n-dimensional Poincare group consists of matrices of the form

$$
g=\left(g_{j}^{i}\right)_{l, j=0, \ldots, n}=\left(\begin{array}{ll}
\Lambda & v \tag{4}\\
0 & 1
\end{array}\right)
$$

where $\Lambda=\left(\Lambda_{v}^{\mu}\right)$ belongs to the Lorentz group and $v=\left(v^{\mu}\right) \in \mathbb{R}^{n}(\mu, \nu=0,1, \ldots, n-1)$.
In order to quantize this group we first define, using co-product (2), the co-commutator

$$
\begin{equation*}
\delta=(\Delta-\sigma \circ \Delta) \quad \bmod \frac{1}{\kappa} . \tag{5}
\end{equation*}
$$

Here σ is the flip operator $\sigma: a \otimes b \rightarrow b \otimes a$.
We have

$$
\begin{align*}
& \delta\left(M_{i j}\right)=0 \quad \delta\left(P_{0}\right)=0 \quad \delta\left(P_{i}\right)=\frac{1}{\kappa}\left(P_{i} \wedge P_{0}\right) \\
& \delta\left(M_{i 0}\right)=\frac{1}{\kappa}\left(M_{i 0} \wedge P_{0}+\sum_{k=1}^{n-1} P_{k} \wedge M_{i k}\right) . \tag{5}
\end{align*}
$$

Again, as in four dimensions [3], δ is a co-boundary

$$
\begin{equation*}
\delta(x)=\mathrm{ad}_{x} r \quad r=\frac{1}{\kappa} \sum_{k=1}^{n-1} M_{k 0} \wedge P_{k} . \tag{7}
\end{equation*}
$$

A calculation of Shouten bracket of r with itself yields

$$
\begin{equation*}
[r, r]=\frac{1}{\kappa} r \wedge P_{0}-\frac{1}{\kappa^{2}} \sum_{k, l=1}^{n-1}\left(M_{k l} \otimes P_{k} \otimes P_{l}+P_{k} \otimes M_{k l} \otimes P_{l}+P_{k} \otimes P_{l} \otimes M_{k l}\right) \tag{8}
\end{equation*}
$$

which is invariant; therefore r is a classical r-matrix. It is easy to check that in only three dimensions we can improve the r-matrix (by adding the symmetric term) in such a way that the new r-matrix is the solution to the classical Yang-Baxter equation; it reads

$$
\begin{gather*}
r=\frac{1}{\kappa}\left(\sum_{k=1}^{2} M_{k 0} \wedge P_{k}+\mathrm{i} M_{20} \otimes P_{1}+\mathrm{i} P_{1} \otimes M_{20}-\mathrm{i} M_{10} \otimes P_{2}\right. \\
\left.-\mathrm{i} P_{2} \otimes M_{10}+\mathrm{i} M_{12} \otimes P_{0}+\mathrm{i} P_{0} \otimes M_{12}\right) . \tag{9}
\end{gather*}
$$

By calculating the Poisson bivector $\Pi(g)=g r-r g$, we determine the Poisson brackets of the coordinate functions on the Poincare group:

$$
\begin{align*}
& \left\{\Lambda_{\nu}^{\mu}, \Lambda_{\beta}^{\alpha}\right\}=0 \quad\left\{v^{k}, v^{0}\right\}=\frac{1}{\kappa} v^{k} \quad\left\{\Lambda_{\nu}^{\mu}, v^{0}\right\}=\frac{1}{\kappa}\left(\Lambda_{0}^{\mu} \Lambda_{v}^{0}-\delta^{\mu} \delta_{v 0}\right) \\
& \left\{\Lambda_{0}^{m}, v^{r}\right\}=\frac{1}{\kappa}\left(\delta_{m r}-\delta_{m r} \Lambda_{0}^{0}+\Lambda_{0}^{m} \Lambda_{0}^{r}\right) \quad\left\{\Lambda_{0}^{0}, v^{r}\right\}=\frac{1}{\kappa}\left(\Lambda_{0}^{0} \Lambda_{0}^{r}-\Lambda_{0}^{r}\right) \tag{10}\\
& \left\{\Lambda_{m}^{0}, v^{r}\right\}=\frac{1}{\kappa}\left(\Lambda_{0}^{0} \Lambda_{m}^{r}-\Lambda_{m}^{r}\right) \quad\left\{\Lambda_{l}^{m}, v^{r}\right\}=\frac{1}{\kappa}\left(\Lambda_{0}^{m} \Lambda_{l}^{r}-\Lambda_{l}^{0} \delta_{r m}\right) .
\end{align*}
$$

In order to obtain the corresponding quantum group we consider the universal $*$-algebra with unity generated by self-adjoint elements $\Lambda_{v}^{\mu}, v^{\mu}(\mu, v=0,1, \ldots, n-1)$, subject to the following relations:

$$
\begin{array}{lll}
{\left[\Lambda_{v}^{\mu}, \Lambda_{\beta}^{\alpha}\right]=0} & {\left[v^{k}, v^{0}\right]=\frac{\mathbf{i}}{\kappa} v^{k}} & {\left[\Lambda_{v}^{\mu}, v^{0}\right]=\frac{1}{\kappa}\left(\Lambda_{0}^{\mu} \Lambda_{v}^{0}-\delta^{\mu 0} \delta_{v 0}\right)} \\
{\left[\Lambda_{0}^{m}, v^{r}\right]=\frac{\mathrm{i}}{\kappa}\left(\delta_{m r}-\delta_{m r} \Lambda_{0}^{0}+\Lambda_{0}^{m} \Lambda_{0}^{r}\right)} & {\left[\Lambda_{0}^{0}, v^{r}\right]=\frac{\mathrm{i}}{\kappa}\left(\Lambda_{0}^{0} \Lambda_{0}^{r}-\Lambda_{0}^{r}\right)} \tag{11}\\
{\left[\Lambda_{m}^{0}, v^{r}\right]=\frac{\mathrm{i}}{\kappa}\left(\Lambda_{0}^{0} \Lambda_{m}^{r}-\Lambda_{m}^{r}\right)} & {\left[\Lambda_{l}^{m}, v^{r}\right]=\frac{\mathrm{i}}{\kappa}\left(\Lambda_{0}^{m} \Lambda_{l}^{r}-\Lambda_{l}^{0} \delta_{r m}\right)}
\end{array}
$$

which are obtained from (10) by making a replacement $\{,\} \rightarrow 1 / i[$,$] . This set of$ relations is consistent: there is no ordering ambiguity, when 'quantizing' the right-hand side of (10) because of commutativity in the first relation of (11). Moreover, since the standard comultiplication is compatible with Poisson brackets (10), it is also compatible with relations (11). We conclude that the above relations together with the standard comultiplication define a Hopf $*$-algebra.

I am grateful to Professor P Kosiński for discussions. This work was supported by KBN grant 202189101.

References

[1] Lukierski J, Novicki A and Ruegg H 1992 Phys. Lett. 293B 344
[2] Giller S, Kosiński P, Kunz J, Majewski M and Maslanka P 1992 Phys. Lett. 286B 57
[3] Zakrzewski S 1993 Quantum Poincaré group related to k-Poincaré algebra UW preprint

